skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Witten, Edward"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> By adapting previously known arguments concerning Ricci flow and thec-theorem, we give a direct proof that in a two-dimensional sigma-model with compact target space, scale invariance implies conformal invariance in perturbation theory. This argument, which applies to a general sigma-model constructed with a target space metric andB-field, is in accord with a more general proof in the literature that applies to arbitrary two-dimensional quantum field theories. Models with extended supersymmetry and aB-field are known to provide interesting test cases for the relation between scale invariance and conformal invariance in sigma-model perturbation theory. We give examples showing that in such models, the obstructions to conformal invariance suggested by general arguments can actually occur in models with target spaces that are not compact or complete. Thus compactness of the target space, or at least a suitable condition of completeness, is necessary as well as sufficient to ensure that scale invariance implies conformal invariance in models of this type. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract We investigate the differential geometry of the moduli space of instantons on S 3 × S 1 . Extending previous results, we show that a sigma-model with this target space can be expected to possess a large N = 4 superconformal symmetry, supporting speculations that this sigma-model may be dual to Type IIB superstring theory on AdS 3 × S 3 × S 3 × S 1 . The sigma-model is parametrized by three integers—the rank of the gauge group, the instanton number, and a ‘level’ (the integer coefficient of a topologically nontrivialB-field, analogous to a WZW level). These integers are expected to correspond to two five-brane charges and a one-brane charge. The sigma-model is weakly coupled when the level, conjecturally corresponding to one of the five-brane changes, becomes very large, keeping the other parameters fixed. The central charges of the large N = 4 algebra agree, at least semiclassically, with expectations from the duality. 
    more » « less
    Free, publicly-accessible full text available January 16, 2026
  3. In recent years, a surprisingly direct and simple rigorous understanding of quantum Liouville theory has developed. We aim here to make this material more accessible to physicists working on quantum field theory. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Abstract We discuss high energy properties of states for (possibly interacting) quantum fields in curved spacetimes. In particular, if the spacetime is real analytic, we show that an analogue of the timelike tube theorem and the Reeh–Schlieder property hold with respect to states satisfying a weak form of microlocal analyticity condition. The former means the von Neumann algebra of observables of a spacelike tube equals the von Neumann algebra of observables of a significantly bigger region that is obtained by deforming the boundary of the tube in a timelike manner. This generalizes theorems by Araki (Helv Phys Acta 36:132–139, 1963) and Borchers (Nuovo Cim (10) 19:787–793, 1961) to curved spacetimes. 
    more » « less
  5. A<sc>bstract</sc> We propose an algebra of operators along an observer’s worldline as a background-independent algebra in quantum gravity. In that context, it is natural to think of the Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define entropy in terms of the relative entropy with this state. In the case that the only spacetimes considered correspond to de Sitter vacua with different values of the cosmological constant, this definition leads to sensible results. 
    more » « less
  6. A<sc>bstract</sc> Generalizing previous results for$$ \mathcal{N} $$ N = 0 and$$ \mathcal{N} $$ N = 1, we analyze$$ \mathcal{N} $$ N = 2 JT supergravity on asymptotically AdS2spaces with arbitrary topology and show that this theory of gravity is dual, in a holographic sense, to a certain random matrix ensemble in which supermultiplets of differentR-charge are statistically independent and each is described by its own$$ \mathcal{N} $$ N = 2 random matrix ensemble. We also analyze the case with a time-reversal symmetry, either commuting or anticommuting with theR-charge. In order to compare supergravity to random matrix theory, we develop an$$ \mathcal{N} $$ N = 2 analog of the recursion relations for Weil-Petersson volumes originally discovered by Mirzakhani in the bosonic case. 
    more » « less
  7. A<sc>bstract</sc> We construct a Type IIvon Neumann algebra that describes the largeNphysics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative 1/Ncorrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in theG →0 limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a “free product” von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to “bulge” quantum extremal surfaces contribute with a negative sign. 
    more » « less